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SIMMARY

The general dynsmic equation of creep bending of a beam loasded lat-
erally and axlally was derived for a linearly viscoelastic material whose
mechanical properties can be characterized by four parameters. The mate-
rial can exhibit instantaneous and retarded elasticity as well as pure
flow.

The equation derived was used to obtain the creep bending deflection
of a beam in pure bending end of a column with initial sinusoidsl devia-
tion from straightness. As expected, the ratio of the creep deflections
of the beam in pure bending and the deflections of a corresponding purely
elastic structure is i1dentical to the ratio of the creep strain and the
corresponding elastic sirain of a bar under simple tension or compression.

The results of the analysis of the creep deflection of the column
showed that the deflections increase continuously with time and become
infinitely lerge only when the loading time is correspondingly large.
However, lerge deflections are obtained in reasonably short periods of
time if the applied load is near to the Euler loasd of the column. The
deflection-time curves cbtained from a numerical example are of the same
type as those determined by experiment with aluminum columns.

INTRODUCTION

The problem of the determination of the behavior of beams and columns
under conditions conducive to creep deformation has been given attention
only in the past several years (see, for exsample, refs. 1 to 8). This
problem is becoming increasingly important because of the high tempera-~
tures at which high-speed missiles and alrcraft as well as modern power
pPlants operate. It 1s the purpose of the present report to Investigate
analytically the nature of the creep deformastion of beams formed from
materials which can be essumed to exhibit linearly viscoelastilc properties
elther at room or elevated temperatures.
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The fundamental behavior of 1deal viscoelestic materials when sub-
Jected to various types of loading has been discussed rather fully in
the literature (see, for example, refs. 2 and 9). In this work the vis-
coelastic material is represented by a system of linearly elastic ele~
ments (such as Hookean springs) and linearly viscous elements (Newtonian
dashpots) connected in various series and parallel configurations (see
figs. 1(a) and 1(b)). An important class of problems which may be ana-
lyzed with the ald of models of the aforementioned type consists of those
involving the effect of viscoelastic creep on the response of beams and
columns to various types of loads. Freudenthal (refs. 1 and 2) has dis-
cussed such problems in which the structural material is considered to
be represented by e single Maxwell element consisting of a linear spring
connected in series with a linear dashpot; hence the materisl properties
are defined by two parameters (fig. 1(c)). However, it is shown in ref~
erence 9 that in order to approximaste resl msterlals, such as amorphous
linear polymers, by & model consisting of springs and dashpots several
such elements must be incorporated in the model. Thus it is the purpose
of the present report to extend the application of the concept of repre-
senting the mechanical properties of viscoelastic besms and columns by
networks of springs and dashpots to models characterized by more than
two peremeters. In particular, the genersl dynamic equatian of motion
of s bent beam column is derived for a material represented by & Maxwell
element connected in series with a Kelvin or Volgt element where the
latter element consists of a spring and dashpot in parallel (fig. 1(d)),
and hence the complete model involves four parameters (fig. 2). Such =
model is capable of exhibiting instentaneous and retarded elastic response,
as well as pure viscous flow.

The author 1s indebted to Professor N. J. Hoff for his guidance and
criticism, to Mr. S. A. Patel for his assistance 1ln carrying out calcula-
tions, and to the National Advisory Committee for Aeronautics for sponsor-
ship of the research reported in this paper.

SYMBOLS
A cross-sectional area
A,B,C1,Co constants of integration
A',B! constants
a amplitude of function representing initiasl deviation from
straightness
Eq,BEs modull of elasticity

G function of time
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VWelastic

Wi

€

€elastic

€o

moment 6f inertls of cross-sectional area of beam or
column with respect to a principal centroidal axis

+ (E1/E2)

length of beam or column

bending moment

bending moment due to lateral and inertial loads
constant bending moment

mass per unit length

constants

exially compressive end load

Euler load, ﬂzElI/L2

epplied lateral load per unit length
funetion of time

time

deflection due to loads

elastic deflection due to losds

function representing initial deviation from straeightness

coordinate along centroldal axis of beam or column

principal axis of cross-sectional area of beam or column

distance from xy-plane
ratio of end load and Euler load
strain, positive in tension

elastic strain

strain at z =0
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€1,€5,€15,€7}, Strain contributions

A1, coefficients of viscosity

o) radius of curvature

c stress, positive in tension

Oog592 stresses

T1,To relaxation and retardation times, respectively

(") =3( )/t
{ )x = ) /x

DERIVATION OF DIFFERENTIAL EQUATION OF BENDING

Basic Theory

The mechanical behavior of viscoelastic materials, such as amorphous
linear polymers, under conditions of small stresses and strain, has been
discussed in great detail by Alfrey in reference 9. It is shown in this
reference that an asnalogy exists between the mechanical behavior of such
materials and the mechanical behavior of Hookean springs (linear elasticity)
and Newtonlan dashpots (linear viscosity) connected in various series aud
parallel networks (fig. 1). If two or more elements are coupled in series
producing a configuration such as the Mexwell model of figure 1{c) each
of the elements must support the total load applied to the model, and
the total extension of the system 1is the sum of the individual extensions
of the elements involved. On the other hand, if elements are coupled in
parallel (such being the case with the Kelvin or Voigt model of fig. 1(d)),
the total load supported by the model is equal to the sum of the loads
carried by the individual elements, whereas the total extension of the
model is equal to the extension of each of its components. The Maxwell
model is capable of exhibiting instantanecus elastic response and viscous
flow when subjected to arbltrary loading conditions. The former action
produces recoverable deformation, whereas the latter action produces per-
menent deformation. The phenomenon of stress relsxstion can be repre-
sented with the ald of such a Maxwell model. The Volgt model represents
a retarded or time-dependent elastic response to applied loads and is
capable of exhibiting elastic aftereffects. It is shown in reference 9
that the mechanical behavior of combinations of Voigt models in series,
such as that shown 1n figure 1(a) where the first and last elements mey
be considered as degenerate Volgt elements, or of combinations of Maxwell
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elements in parallel (fig. 1(b)) 1s analogous to the mechanical behavior
of amorphous linear polymers under conditions of small stresses and
strains. In order to determine the pertinent elasticity and viscosity
coefficients to be used to complete the choice of a model representing

a given material, suiteble creep or relexation tests must be undertaken.
The various coefficients are then determined empirically. Once these
coefficients are known as functions of temperature (end they will be func-
tions only of temperature if the material being represented is visco-
elastic and the model chosen is of sufficiently complete structure), then
the behavior under arbitrary conditions of loading and temperature of
any isotroplc, homogeneous structural member formed from the viscoelastic
material can be described analytically. Although only those structural
members which can be considered to be uniaxially stressed are considered
herein, a generalized three-dimensional theory exists and is described

in reference 9. However, the theory presented therein is valid only for
models characterized by two parameters. :

In the ensuing analysis the behavior of viscoelastic beams and col-
ums is studied by assuming that the material of construction can be
represented adequately by a network consisting of a spring in series with
e Voigt element and a dashpot (see f£ig. 2). The model chosen can be con-
sidered as representing a first approximation to a more general model
(see fig. l(a)) and is capeble of exhibiting instantanecus end retarded
elastic response as well as viscous flow. Any model of simpler nature
then that chosen is in general incapable of responding to loads in &
manner analogous to known viscoelastic meterisls. In the present study
the structures considered are assumed to be in a state of uniform con-
stant temperature and hence the elasticity and viscosity coefficients are
constants.

STRESS-STRATN-TIME LAW

With the use of the principles governing the behavior of springs and
dashpots coupled in series or parallel stated earlier, the general stress-
strain-time relationship governing the behavior of the four-parameter model
of figure 2 can be determined. If at any time +t +the stress o is
applied to the model as shown in figure 2, where ¢ is positive in ten-
sion, the strain contribution €y, ©Of the elastic element (1a), having

an elastic modulus E;j, is given by Hooke's law as

€1y = q/El (1)

The relation between the applied stress and corresponding strain in the
viscous element (1b) is given by Newton's law of viscosity as
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in which Ay 1is & coefficient of viscosity and the dot &bove the strain .

indicates differentiation with respect to time. Thus the combined strain
contribution €3 of elements (1a) and (1v) is related to the applied

stress as follows:
€ = (&/El) + (0’/7\1) (3)

Equation (3) is the well-known stress-strain-time relationship for a
Mexwell model.

The strain contribution e, of elements (2a) and (2b), respectively,
is related to the applied stresses oy, &and Oy, where the sum of these

stresses 1s the applied stress o, by expressions similar to equations (1)
and (2). Thus

€n = OEE/EQ (l")
€p = Ipp/Pe (5)
in which E, 1s the modulus of elastliclity and }2 the coefficlent of .

viscosity of the elastic and viscous elements (2a) and (2b), respectively.

Hence the strain ep 1s related to the applied stress by the
equation

Equation (6) is the defining equation of a Kelvin or Voigt model.
The total strain in the model of figure 2 is

€ =€ + & (7)

in which e and e, are defined by equations (3) and (6), respectively.
Elimination of e end ep from equations (3), (6), and (7) leads to

the following stress-strain-time relation governing the mechanical behavior
of the four-parameter model considered:

b.' + (k/’ra)& + (l/TlTE)o = Elig + (l/'rz)a (8) «
in which T, = Kl/El, the relaxetion time of a Maxwell element with elas-
ticity and viscosity coefficients E; and A;j, respectively; To = KE/EE,
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the retardation time of a Voight element with elasticity and viscosity
coefficients E, and N\,, respectively; and k = 1 + (72/71) + (E1/E2).

Equation (8) is thus the uniaxial stress-strain-time relationship
for a viscoelastic material whose response to loading at a constant tem-
perature 1s analogous to the behavior of the model shown in figure 2.
The determination of the strain-time relation for a member under uniform
tensile or compressive stress is facilitated by the direct application
of the component equations (3) and (6) rather than the general equation (8).
Thus equations (3) and (6) together with equation (7) arnd the condition
that at t =0 € 1is completely elastic and equal to € result in the

following strain-time relation (see ref. 9):

¢/€e1astic = (E]./E2) (1 - e-t/Tz) +(t/m) + 1 (8a)

in which the elastic strain egq 5440 = G/El. This relation is plotted

in figure 3 for values of the elasticlty and viscosity coefficients used
in subsequent calculations.

Strain-Deflection Relation

Consider a beam loaded in & manner such that the bending moment
vector M acting on any cross sectlon coincides with a principal cen-
troidal axis such as the y-exis in figure 4. With the assumption that
cross sections of the undeformed beam remain plane and normal to the cen-
troidal axis after bending, each element of the beam deforms under the
influence of the bending moment and an axial load as indicated in fig-
ure 5. In this figure x 1s the centroidal axis of the beam; 2z 1is
the distance from the xy-plane to any other parallel plane; €, and €

are the strains, shown positive in tension, at the xy-plane eand at a
distance 2z from this plane, respectively; and p 1is the radius of
curvature of the centroidal axis. Thus the strain corresponding to any
z 1is

€ = (1 + &)(z/o) + < (9)
If the strains are considered small, equetion (9) becomes
e = (z/0) + ¢ (10)

Since the strain e i1s a linear function of 2z, the stress is also a
linear function of z (see eq. (8)). Hence, the stress distribution
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across & section can be decomposed into a uniform stress and a linearly
distributed stress which vanishes at the xy-plane. If a constant axially
compressive load P 1is applied to the beam of cross-sectlonal area A,
the uniform stress (and hence the stress at z = 0) i -P/A. Therefore,
€o, which is caused by the constant stress -P/A, can be determined from

equation (8a), in which €gjpgtic 18 now taken as -P/AE;.
For small displacements w of the centroidal sxis

1/p = “Wxx (11)

where a subscript x denotes one differentiastion with respect to x.
Thus for. small strain and displacements

€ = -ZWyy + € - (12)

Differential Equation of Bending of a Beam Column
With the aid of equations (8) and (10), the differential equation

of bending is readily derived. Multiplication of equation (8) by =z dA
end integration of the resulting egquation over the area A yield

fA 52 an + (/) fA 52 o + (1/7y7p) j; oo da =

Elf €z dA + (Elng)f €z dA (13)
A A
The moment M 1is related to the stress by the relation
M= f oz dA (14)
A

Substitution of equations (10) and {14) into equation (13) together with
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where I is the moment of inertia of the cross-sectionsl area A with
respect to the centroidal principal axis y (fig. 4), ylelds

E11[§2(l/p)/%t2 + (1/+2)a(1/b)/é%ﬂ =M + (k/%e)ﬁ + (%/TlTE)M (15)

Equatlon (15) is the general equation of bending of a beam of viscoelastic
material whose mechanical analog is the model shown in figure 2. For
small displacements the curvature l/p is defined by equation (11) end
hence equation (15) reduces to

-E1T [W [xx (1/r2 wx;] = M+ (k/To)M + (1f/rymo)M (16)
The bending moment can be expressed as .
M= P(w + Wi) + M(x,%) (17)

in which w4y represents an initial deviation from straightness of the
original beam axis and M is the moment contribution due to applied
lateral and inertial loads. Substitution of M from equation (l"() into
equation (16) yields

Eq T I:xx 1 TZ)WXJ] + PE (k/T2 W + (l/'rl'ra)a =

-2/ TITo) Vi - M - (%/ Te)ﬁ - (Y mame)¥ (18)
Furthermore, if m 1s the mass per unit length of the beam and P 1is
an applied load per unit length of the beam, where m mey very with x
and p wlth x and t, then

Myx = -p + mw (19)

Hence equation (18) becomes

i B+ (2] b {2 (s (1/7172@} i
w[# + (xfra) ¥ (3rma)¥] = -[B/rra)ie) e + 5
(/2B + (1/m1mo)P - (20)

Equation (20) is the general dynamic equation of bending with small deflec-
tion of a four-paremeter viscoelastic material. If T, 1is considered
infinitely large, that is, the Voigt element of figure 2 is frozen in,

then equation (20) reduces to the dynamic equation of bending of a bean

of Maxwell materiasl (see ref. 10).
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INITIAL CONDITIONS

Regardless of the exact nature of any particular beam problem, cer-
tain initisl conditions which must be imposed on all solutions of equa-
tion (20) are assumed in the present application of the viscoelastic
model of figure 2. These conditions are that all external loads are
applied instanteneously and hence the initlal response is purely elastic
(see ref. 9). Thus at t =0

€= €15 =0fF (21)

and
€p = €0 = 0 (22)
Since € = €1, + €7 + €p, equations (21) and (22) yield only two independ-

ent relations. Differentiation of equation (7) with respect to ¢t and
subsequent substitution of equations (3) and (6) into the resulting equa-

tion yield
€5 = (TQ/E:L)C;' + Kk - 1) /El]a - To€ (23)

Introduction of equation (12) into equation (23) results in the following
relation for es:

€ = (TQ/E]_)& + Bk - l)/EJ:]c + T2(Z¥.\Txx - éo) (24)

Multiplication of equation (24) by 2z dA, integration over the area A,
and introduction of equation (14) into the relation obtained yleld for

€0 =0 at t=0
(Tg/El)l:i + Bk - l)/EﬂM + TolWyy = O (25)

Hence equations (21) and (25) are initial conditions which must be imposed
on all solutions of equation (16) or (20).

APPLICATTONS OF DIFFERENTTAI EQUATION OF BENDING
Beam Under Pure Bending
Equation (16) can be readily spplied to the problem of creep due to
pure bending of a viscoelastic beam with inertial effects neglected. If

the applied constant bending moment is designated as My, then equation (16)
becomes
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ElI[}Cx + l/‘l’2 Wxx] l/TlT2 Mo (26)

Integration of thils equation twice with respect ?o x and introduction
of the conditions that, et x =0 and L, W¥=w=0 yileld

E11[§ + (l/Tg)%] = (MO/QTlTQ)(LX - x2) (27)
in which I is the length of the beam.

If w 1is written as

= 6t fMo/27ymp) ( 1/B1T)(1x - *2) (28)
where G(t) is a function of time only, then equation (27) reduces to
+-(1/T2)é =1 (29)

The general solution of equation (29) is
-{t/T
)

where C; and C, are constents of integration. Thus equation (28)
becomes

+ Ta(t + Cp - 72) (30)

-(t/72)

w = (Mo/2r17p )(1/E11) (1x - x2)(Cye
At t = 0, the initlal Jeflections are purely elastic and hence
¥ = Velastic = (M0/2E11)(Lx - x2) (32)

Also at t =0, €y = 0 and hence equation (25) together with equation (31)
yields :

+ Ta(t +Cp - 72) (31)

Cl = = (El/EQ) T1T2 (35)

Application of equation (32) and substitution of equation (33) into equa-
tion (31) result in the following value for Cs:

Cp = Tk (34)
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Hence from equations (31), (33), and (34)

-t
W = (El/E2)<l - e /72)+ (t/r1) + 1 (Mo/221)(1x - x2)  (35)
In terms of the elastic displacement, equation (35) becomes

tfT

2) + (‘b/Tl) +1 (36)

Equation (35) or (36) describes the pure-bending creep behavior of
a viscoelastic beam whose material has a mechanical behavior under stress
analogous to the behavior of the model of figure 2. Equation (36) is
plotted in figure 3 and yields a creep curve identical to the creep curve
for the same material under simple tensile or compressive stresses (see

eq. (8a)).

W/Welastic = (El/E2)<l - e-

Column With Initial Curvature

The behavior of a viscoelastic column whose centroidal axis initially
deviates from e straight line can also be analyzed with the aid of equa-
tion (20). With inertial effects neglected equation (20) when applied
to the simply supported wniform column of length 1 indlcated in fig-
ure 6 reduces to

E{I Em + (1/1-2)%}“{};] + PExx + (k/TE)v}n +
(1/7172)wm3 = -(B/T172) 1y (37)
If the initial deviation from straightness is teken as

wy = a sin(xx/L) (38)

where a 1s a constant, then the solution of equation (37) for the
additional deflection w can be assumed in the form

w = al(t) sin(mx/L) (39)

where T(t) is a function of time only. Upon substitution of equetions (38)
and (39) into equation (37) the following equation results for the func-

tion T:
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T+ (1/72) %_:_](‘é;;f_)ﬁﬂ T - (1/ry7p) {(P/PE)/E - (P/PE]} T =

(l/TlTE)(P/PE)/ l: - (®/ PE] (%0)

in which the Euler load Pgp = :tzElI/Le. The general solution of equa-
tion (40) is

mt not
T = Ae + Be -1 (k1)

in which A and B are constants of integration and

ny = -[(3/2r)(2 - m) f2 - )] + [Kl/afe)(l - )1 - @) 2 .|
[/mma)efia - m)]} e

= -[(3fera)a - ) - o] - {[/ere)a - mfla - ]2
[Gyraraefs - <] J° )

where a = P/PE: Since o must be less than unity in order for the
column to be initially steble, ny is real and positive and np, 1is

real and negative.

> (14-2)

W/

Upon substitution of equation (41) into equetion (39), the deflec-
tion w becomes

( nqit npt )
w=|Ae + Be - 1)a sin(wxx/L) (43)

The initial conditions which must be imposed on equation (43) are (see
egs. (21) and (25))

t =0, W = Welastic = E./ (- a,ﬂa sin(nx/L) (4%)

t =0 (Tz/El)BZ[ + Bk - l)/El M+ TZI{GD{ =0 (45)

-
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Since M = P(w + Wi): equation (45) together with equation (43) yields
at t =0

{:11 - [(k - 1)/7%]0:,/(1 - a.)} A+ {na - Kk. - 1)/7%0:,/(1 - a,)} B=0 (46)
Similarly, equations (43) and (4k4) yield
A+B=1/(1 -a) (47)
Thus the constants A and B are B
A= E_/(l - a.'ﬂ { [k - 1)/7&“}/(1 - q,] - np /(nl - np) s8)
B = -E/(l - o)] {Kk - 1)/7%] E[,/(l - aﬂ - nl}/(nl - n,)
Hence the solution can be expressed in the following nondimensional forms:

I nyt l nst
(W + Wil/(welastic + Wi) = A'e + B'e (49)

in which

A' = {Kk - 1)/75][a/(2 - o) -neJ/(nl - np)
B' = -{ [(x - 1)/5] [a/(2 - ) - nj}/(nl - np)

The ratio of the strain e at any distance 2z from the xy-plane
(fig. 5) and the elestic strain at z = 0, e°elastic’ can now be deter-

mined from equation (12) together with equations (8a), (38), (&%), and (49).
Thus

(50)

€/€0e1astic = ~Z(88/T)(1/a) {[1/ (1-a) (A'enlt +

+

Blenzt) ) 1:} sin(x/L) + (El/Ea)(l - e't/'re)
(/) + 1 (51)

in which €°elastic = 'P/AEl'
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Equation (L43) or (L49) shows that for the column considered the deflec-
tions due to linearly viscous creep increase with time and approach infinity

only as t approaches infinity for o = P/Pgp < 1. Equation (49) is plot-
ted in figure 7 for wvarious values of P/PE for a material whose elas~

ticity and viscosity coefficients are given in the figure. The curves
show that for P/PE = 0.8 the deflections increase much more rapidly

with time than for the smaller velues of P/Pp. For the same material

described in figure 7, equation (51) is plotted in figure 8 for x = L/2,
R/PE = 0.5, and z(aA/I) = #0.1. The curves show that on the compression

(concave) side of the beam the compressive strain increases monotonically
with time, while on the tension (convex) side the strain reaches a maxi-
mum value in compression, whereupon 1t decreases monotonicelly through
zero, finally becoming tensile.

It mey be noted that equation (49) reduces to the corresponding
solution for a column constructed of a Maxwell element if T, 1is taken

infinitely large (see refs. 1 and 2).
DISCUSSION

The differentisl equation of bending of a beam or column was derived
for a viscoelastic materisl whose mechanical behavior is analogous to
that of the model shown in figure 2. This model, whose properties are
defined by two elasticity and two viscosity coefficlents, is the simplest
model exhibiting instantaneous and retarded elasticlty as well as pure
flow. For materials whose properties are defined by more general linesrly
viscoelastic models (see fig. 1(a)) corresponding differentisl equations
of bending can be derived in a mammer similar to the derivation presented
earlier in the text.

The results of the analysis of the creep deflections of a visco-~
elastic beam under pure bending are shown in figure 3. It is seen from
equations (8a) and (36) that the ratio of the deflections of the beam and
the deflections of the corresponding purely elastic structure at any
time is identical to the ratio of the total strain and the purely elastic
strain of a bar under uniaxial tensile or compressive stresses. Consid-
eration of the linear nature of the stress-strain-time relation (eg. (8))
also leads to the conclusion that for any bent bar the stresses are line-
arly distributed across the depth since the strains have been so assumed.
Hence for all cases of bending of a bar by static lateral loads the
initial linear distribution of stresses across the depth of the beam
remains unchanged and can be determined by consideration of egquilibrium
only, even though the deflections increase continuously with time.
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The analysis of the creep deflections of a simply supported column
with an initial slnusoidal deviation from straightness resulted in the
observations that the deflections tend to be infinitely large with time
and that for the applied load less than the Euler load the deflections
remain finite for finite time (see eq. (49) end fig. 7). Because of the
linear nature of the general differential equation of bending (eq. (20))
these observations are gpplicaeble to column problems similar to the one
considered hereiln but with initial shapes other than the single sine
wave. In the case of columns, as with beams, the stresses are linearly
distributed across the depth (see eqs. (8) and (12)). However, the
actual distribution changes continuously with time since the applied
moment which is proportional to the total deflectlon changes with time.

The variatlion of strain with time at the midspan of the column at
two points symmetrically located with respect to a plane normsl teo the
principal plane of bending and containing the beam axis is shown in fig-
ure 8. The compressive strain on the compression side of the beam
increases monotonically with time; whereas the strain on the tension
slde reaches a meximum value in compression, then decreases monotonically
through zero, finally becoming tensile.

The deflection-time curves shown in figure 7 indicate that the
deflections may increase very rapidly with time for end loads near the
Buler load. It is Interesting to note that the curves exhlbit the pri-
mary and secondary creep characteristics observed in experiments with
aluminum columns reported in references 6 and 8.

Polytechnic Institute of Brooklyn,
Brooklyn, N. Y., April 18, 1952.
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(b) Maxwell elements in parallel.
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Figure 1.- Models used for study of mechanical behavior of linearly
viscoelastic meterials.
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Figure 2.- Four-parsmeter viscoelastic model.
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Figure 3.- Creep strain for uniform tension or compression and creep
deflections for pure bending. E; =5 X 100 psl; Eo = 13 X 10° psis
AL = 10° lb-hr/sq in.; Ap = 13 X 107 1b-hr/sq in.; 1, = 2,000 hr;
T2 = 100 hr.
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Figure 4.~ Cross section of beam.
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Figure 6.- Deflections of a simply
supported 1nitielly curved column.
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Figure 5.~ Geometry of strains

in deformed beam.
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Figure T7.- Creep deflections of a simply supported Initially curved
colum. Ej =5 X 109 psl; Ep = 13 X 105 psi; A = 109 lb-hr/sq in.;
A =13 X 107 1b-hr/sq in.
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Figure 8.~ Creep strain at midspan of & simply supported initially curved
column. P/PE = 0.5. (See fig. 7 for material properties.)
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